
StoryStylus Scripting Help

Version 0.9.6

Monday, June 29, 2015

One More Story Games, Inc. ©2015

Contents
Versions .. 3

Scripting User Interface .. 4

Script Triggers ... 5

If-Then Scripting Language ... 6

Intellitype Script Help ... 8

Handing out Clues to the Sleuths.. 9

Moving and Timed Events... 10

Take/Use Items ... 12

Combine Items .. 13

Triggering Different Story Introductions ... 14

Story Solutions Enabled .. 15

Story Chapters .. 16

Case Solutions ... 18

Advanced Scripting ... 21

Versions
Version# Date Notes

0.9 7 January 2015 • Initial Draft – Missing Sections on Story Chapters, Case Solutions
& Advanced Scripting

0.9.5 10 January 2015 • Added section on Case Solutions.
• Updated Scripting User Interface screenshot to include help

button.
0.9.6 28 June 2015 • Updated section on Case Chapters.

Scripting User Interface

Here is a screenshot of the scripts panel from StoryStylus highlighting the five main panel regions:

• Entity List – Lists all of the entities in your story which can have script attached to them. Also,
authors can sort by the number of scripts attached to an entity (see states below) making it easier to
distinguish between entities that have scripts and those that do not.

• Script Editor – The text editor where entity scripts are loaded and where authors can edit and tweak
what happens when sleuths interact with the entities in their stories.

• State Graph – Initially an entity has no scripts associated with it. Authors add states to entities, and
each state has a script for that entity. Usually you only need one state per entity, but sometimes
authors can achieve very complex scripting behaviour by organizing their entity scripts into finite
state machines. This is covered in more detail in the advanced scripting section at the end of this
document. For now, if an entity has no scripts, then you can click the add state button and then not
worry about any of the advanced state functionality.

• Find/Replace – Sometimes authors will want to see every time a particular code effect is used, or
perhaps tweak one parameter in every case it is used. Entering in the search text in the find text box
and clicking “Global Search” will reveal every instance of that text in the game script code.

• Find Results – The results of a global search are listed in this panel. Clicking on a list entry will
automatically load that script into the editor panel, and select that found section of text.

• Help Button – Provides an instant link to the most current PDF version of this file.

Script Triggers
The key concept of scripting in StoryStylus is that when a player does something, then if there is a script
attached to that action, then the script can alter the different outcomes of that action.

Action Entity Script Type Possible Outcomes
A sleuth visits a location
looking for clues.

Location Default • A clue is discovered
• Sleuth is sent to another location.
• A person is revealed at that location.
• Another location is revealed.

A sleuth attempts to take
an item.

Item Take • Prevent the item from being taken.
• A person is moved into the current

location.
• The item “breaks”, is removed from

the location and a new “broken”
version of that item replaces it.

A sleuth uses an item. Item Use • A door is unlocked and can now be
used.

• A clue is discovered.
• A hover is revealed.

A sleuth combines an item
with another item.

Item Combine • Items are removed from the sleuth
inventory, and replaced with a new
item.

A sleuth attempts to go
through a door.

Door Default • Sleuth is prevented from moving
through the door.

• A clue is revealed.
A sleuth examines part of
a room.

Hover Default • A clue is revealed.
• A door is now usable.
• An item is placed in the current

location.
A sleuth visits a location in
a given neighbourhood.

Neighbourhood Default • Reveals a new location on the map.
• Sleuth is prevented from entering that

neighbourhood.
A sleuth moves from one
location to another.

Case Move • Keeps track of how many turns have
elapsed since the start of the story.

• Triggers a clue after a number of turns.
• Prevents the sleuth from moving.
• Triggers the next story chapter.

A sleuth starts a case with
a special profession.

Case Intro • Issue a different story introduction.

A sleuth thinks they have
enough clues to solve the
case.

Case Solve
Conditional

• Prevent solve screen.
• Allow solve screen.

A sleuth answers all
questions to submit their
solution.

Case Solve • Assign a case result based on sleuth’s
answers.

If-Then Scripting Language
The scripting language that is used is called LUA. The great advantage of this language is that it allows you to
create complicated logic rules to handle a great number of different “what if” situations.

A conditional statement checks the “conditions” of the game story, and does one thing, or another based on
that condition:

if (check_something_is_true) then

 do something

end

The format here is the requirement of the if-then followed by the end statement to show where the
conditional statements ends. You need the “end” in case you want to do more than one thing as a result of
“check_something_is_true”:

if (check_something_is_true) then

 do one thing

 do a second thing

end

A more complicated version of the if-then logic is to something else if the “check something is true” doesn’t
work. So we get a case of do one thing OR do something else:

if (check_something_is_true) then

 do something

else

 do other thing

end

And you can check more than two options by using elseif:

if (check_something_is_true) then

 do something

elseif (check_other_thing_is_true) then

 do other thing

else

 do last thing

end

In this way we can have three (or more) options take place. If one thing is true then do option 1, or if another
thing is true then do option 2, otherwise do option 3.

The condition of “check_something_is_true” doesn’t have to be one thing you are checking. You can combine
multiple conditions by using the “and”, “or”, & not to come up with any sort of complex logic that you
require.

Either check can be true:

(check_true) or (check_other_is_true)

Both checks must be true:

(check_true) and (check_other_is_true)

Intellitype Script Help
The main way that you interact with the game in a script is to use an Effect call. In the code library we include
a number of useful functions in the Effects such as “is a given clue known to the sleuths?”, or “move a person
to a specific location”. Don’t worry about trying to remember all of the different effects calls, we have a built-
in help system to help you learn the language.

All effects calls start with “Effects.”, so the syntax of using an effect call is:

Effects.<particular_call>(parameters)

If you hover your cursor over an effect call, you can get a general description of how it works and what you
can expect:

If you type “Effects.” then you can get a complete list of every effects call you can use in your scripts:

And if you need help figuring out which parameters you need to use, then when you’re typing you can get a
list of all of the different entities you’ve created in your case and their descriptions:

Handing out Clues to the Sleuths
Probably the most important effect used in StoryStylus is the “make clue known” call. When this effect is
called, a clue is revealed to the players. This line will reveal the clue “Why_Indeed” to the players:

Effects.makeClueKnown(Clue.Why_Indeed);

A clue can only be revealed once. If this script was triggered a second time, then nothing would happen. A
common example of a clue script is to attach it to a location so that when a sleuth goes to that location, they
get a clue.

The second most useful effects call is the “is clue known” call. If a clue is known to the player, then it gives a
value of 1, otherwise it gives a value of 0.

The “==” is the coding way to check if something is equal to a particular value, so (1 + 1) == 2.

To put it all together, you can have different clues get triggered by using the if-then-end structure:

if (Effects.isClueKnown(Clue.First_Clue) == 1) then

 Effects.makeClueKnown(Clue.Second_Clue);

else

 Effects.makeClueKnown(Clue.First_Clue);

end

In this way, if you already know the “First_Clue” then you learn the “Second_Clue”. If you don’t know the
“First_Clue”, then you learn it. In this way, you can visit the same location twice and get two different results.

Another important code you will need to know later for Case Solutions is “~=”. This checks to see if one thing
does not equal another thing: (1+1) ~= 3. So you can check to see if a clue is NOT KNOWN, and then show a
particular clue:

 if (Effects.isClueKnown(Clue.First_Clue) ~= 1) then

 Effects.makeClueKnown(Clue.First_Clue);

end

So if a clue isn’t known then show that clue. But this isn’t really useful because makeClueKnown will not show
anything if the clue IS KNOWN, so in this case you may as well just make a clue known and don’t worry if the
clue is already known because nothing will happen.

Moving and Timed Events
There three distinct events that happen when a sleuth moves to a location:

1st Move Event Case Move • Keeps track of how many turns have
elapsed since the start of the story.

• Triggers a clue after a number of turns.
• Prevents the sleuth from moving.
• Triggers the next story chapter.

2nd Move Event Neighbourhood Default • Reveals a new location on the map.
• Sleuth is prevented from entering that

neighbourhood.
3rd Move Event Location Default • A clue is discovered

• Sleuth is sent to another location.
• A person is revealed at that location.
• Another location is revealed.

When a sleuth double clicks on a location to move, the three events move events occur in order from the
case move script, then the neighbourhood default script for the new location, and then finally the location
default script for the new location. If any one of these scripts calls a “stop sleuth movement” call, then the
sleuth will stop moving. For example, if the case move script (1st move event) stops the sleuth, then the other
two move scripts will not trigger.

Let’s say that you want to perform timed events in your story. You want to keep track of how many times the
player has moved, and on special turn numbers you want to stop the sleuth from moving, and reveal specific
clues.

To be able to do this, you would create a flag for your story to keep track of the current turn number. You
would create a script flag called currentTurn, set the initial value of the flag to 1, set the minimum value to 1,
and the maximum value to 100 (or some other large number).

Then you would add the following script to case move:

Effects.incrementFlag(Flag.currentTurn, 1);

if(Effects.getFlag(Flag.currentTurn) == 4) then

 Effects.displayClue(Clue.Fourth_Turn_Clue);

 Effects.stopSleuthMovement();

end

if(Effects.getFlag(Flag.currentTurn) == 9) then

 Effects.displayClue(Clue.Nineth_Turn_Clue);

 Effects.stopSleuthMovement();

end

Here’s how this script code works. Every time that the player moves, the currentTurn flag is incremented by
1. When the currentTurn flag is equal to 4 or 9, then a particular clue is displayed and the sleuth’s movement
is halted.

You could even have the multiple flags used to keep track of the time passing after several events. You would
just put conditionals (using another script flag) to see if the particular events had occurred, increment the
different timer flags, and then perform the conditional check like before:

if(Effects.getFlag(Flag.triggerEvent_A) == 1) then

 Effects.incrementFlag(Flag.turns_Since_Event_A, 1);

end

if(Effects.getFlag(Flag.turns_Since_Event_A) == 10) then

 Effects.displayClue(Clue.post_Event_A_Clue);

 Effects.stopSleuthMovement();

end

This script checks to see if an “EventA” has been triggered, and then 10 turns after that the
“post_Event_A_Clue” is displayed to the player. A good use for a script like this could be talking to a person,
and then later on the person calls the player back to tell them something that they forgot from their initial
conversation.

Take/Use Items
A take item state machine is triggered when a sleuth tries to take an object. Usually a sleuth will have no
problem with taking an item and putting it into their inventory. If a stopTakeItem effect is called in a take
script, then the sleuth will fail to take the item and be unable to put it in their inventory.

The best way to use the take script is to check if a set of circumstances exists then call stopTakeItem to
prevent the item from being taken. Then if these circumstances change, then allow the item to be taken. In
the example below, this is a script that is attached to a Police Cap object. If the cap item and the person
“Officer Brady” are in the same location (Café Perk), then the police officer character stops the player from
being able to take the Police Cap.

if(Effects.isItemInLocation(Item.PoliceCap, Location.Cafe_Perk) == 1 and
Effects.isPersonKnown(Person.Officer_Brady) == 1 and
Effects.isPersonInLocation(Person.Officer_Brady, Location.Cafe_Perk) == 1)
then

Effects.displayClue(Clue.Brady_Stops_You);

Effects.stopTakeItem();

end

Here is even an example of a similar script where the players have not yet met the Officer Brady character. In
this situation the players will not see the Brady character, but will only see the Police Cap item. But they will
still be unable to put the cap into their inventory.

if(Effects.isItemInLocation (Item.Doughnut, Location.Cafe_Perk) == 1 and
Effects.isPersonKnown(Person.Officer_Brady) == 0 and
Effects.isPersonInLocation(Person.Officer_Brady, Location.Cafe_Perk) == 1)
then

Effects.displayClue(Clue.Meet_Officer_Brady);

Effects.stopTakeItem();

end

To resolve this situation, perhaps the players have to use a “doughnut” (or other suitable bribe item) to get
Officer Brady to move from the Café Perk location. So this is the script we would place in the use item for the
doughnut object:

if(Effects.isPersonInLocation(Person.Officer_Brady, Location.Cafe_Perk) ==
1 and Effects.isThisTheRightLocation(Location.Cafe_Perk)) then

Effects.displayClue(Clue.Officer_Brady_Leaves);

Effects.movePerson(Person.Officer_Brady, Location.Doughnut_Shop);

end

If both Officer Brady and the player are at the café, then we move Brady to the Doughnut Shop location, and
give a clue that says that Brady has left the café. Now the player will be able to get the Police Cap item and
have it in their inventory.

Combine Items
A combine item script allows a player to combine two or more objects together to create a new item in their
inventory. For example, you could have multiple scraps of a torn will that need to be combined together to
create an assembled will document.

The combine script needs to only be set on one of the combine items. The program will check all items that
have been placed in the combine screen, and if any of them have a combine script, then that script will be
triggered.

Here is an example of a combine script for combining two parts of a dagger (a blade and a hilt) to make a
complete weapon.

if(Effects.isItemInCombineArray(Item.Dagger_Blade) == 1 and
Effects.isItemInCombineArray(Item.Dagger_Hilt) == 1 and
Effects.getItemCombineArrayLength() == 2) then

Effects.removeFromInventory(Item.Dagger_Blade);

Effects.removeFromInventory(Item.Dagger_Hilt);

Effects.putItemInInventory(Item.Dagger_Full);

Effects.displayClue(Clue.Dagger_Assembled);

end

There are two parts of this script: the conditional check, and then the code that does the actual combine.

In the combine script, you remove the combine items from the sleuth inventory and then put back into the
sleuth inventory a new item that represents the combined whole. In the example above, the blade and hilt
objects are removed from the inventory and replaced with the full dagger. Also in the example above, there
is a clue that gives the sleuth some information about the successful combination of the dagger.

In the conditional check, there are multiple logical checks that need to be true in order for the item combine
to actually occur. So the combine is composed of multiple checks that are combined into a collection of “and”
statements (i.e. if ALL conditions are true):

if(A and B and C) then

 <combine code>

end

All but the last conditional check is to see if the player has selected the correct objects to be combined.
Combining the dagger blade with a baseball bat will not have the same result as the blade with the hilt. So in
the code above, you check that the blade and the hilt are in the combine array (the combine interface) when
the player clicks on the COMBINE button. The last check counts the number of items that have been
combined (i.e. can only be 2). This prevents players from putting their entire inventory in the combine
window and hoping that some correct combine “recipe” combination is present.

Triggering Different Story Introductions
Here is an example of a case introduction script:

if (Effects.isSleuthOfProfession(Profession.Lawyer) == 1) then

 Effects.setIntroduction(Introduction.Lawyer_Introduction);

end

In this script, we check to see if one of the starting sleuths is of profession type Lawyer, and if so, then the
starting introduction becomes Lawyer_Introduction. If one of the sleuths is not a lawyer, then the
introduction that will be displayed is whatever was set as the default in the case information panel.

With multiple checks an author could have several different introductions for a case. One story could have a
completely different starting set of clues depending on the type of sleuth character being played.

if (Effects.isSleuthOfProfession(Profession.Lawyer) == 1) then

 Effects.setIntroduction(Introduction.Lawyer_Introduction);

 return;

end

if (Effects.isSleuthOfProfession(Profession.Doctor) == 1) then

 Effects.setIntroduction(Introduction.Doctor_Introduction);

return;

end

Here there are two different introductions, one for lawyers, and another for doctor sleuths. We put a return
line after setting the introduction so that no further script code is called. If there were two sleuths playing
together, and one was a doctor, and the other was a lawyer character, then the lawyer introduction would be
given and NOT the doctor introduction. Once the check is done for the lawyer and it matches, then the
introduction for the story is set as the lawyer_introduction, and then the case introduction code stops. The
second check for the doctor sleuth is never performed.

One other noteworthy point is that case introductions can only be set in the introduction script for that case.
If you try to make this call in any other script, then it will not work. If no other introduction is set for the case,
then the default introduction will be set and then this will remain for the rest of the story.

Story Solutions Enabled
Most mystery stories will end with the players entering into the solve screen to answer several skill-testing
questions. If they have figured out the mystery, then they will correctly answer all of the questions correctly.
But perhaps you don’t want to allow the players to enter into the solve screen until they have reached a later
stage of the story: i.e. you don’t want the players to close the introduction and then randomly entering in
answers to try to “skip to the end” of your mystery game. In this case, you can check to see if enough turns
have passed, or if an important clue has been discovered, and then the player can go to the solve screen to
try to correctly answer the mystery questions.

The type of script is a solve conditional script for a case. This is triggered when a player attempts to go into
the solve screen by clicking on the solve button off of the sleuth menu. If the effect
“quizConditionsHaveBeenMet” gets called, then the quiz will trigger as normal.

Here is an example of a solve conditional script:

if (Effects.isClueKnown(Clue.You_Know_Enough_To_Solve) == 1) then

 Effects.quizConditionsHaveBeenMet();

end

In the above example, if the clue “You Know Enough to Solve” is known to the sleuths, then the quiz will
trigger when the player clicks on the Solve button; otherwise, the player has not yet met the conditions to
solve the case.

If the author set up a case move script that was tracking how many turns have elapsed (see move example
above), then the quiz can be triggered after enough turns have elapsed.

if(Effects.getFlag(Flag.currentTurn) > 50) then

 Effects.quizConditionsHaveBeenMet();

end

In this example, the player sleuths can not solve the mystery until more than 50 turns have elapsed.

Remember that the only way that this solve conditional script will work is if you have the following line
hooked up in the case move script, and have created a scripting flag called currentTurn:

Effects.incrementFlag(Flag.currentTurn, 1);

Otherwise the solve conditional script will not know when to trigger the conditions for the solve quiz.

Story Chapters
Longer stories will tend to be organized into chapters, which can also help to organize the flow of a branching
narrative. When you create a series of chapters you must first specify which of these will be the starting
chapter, only one chapter can be checked as the starting chapter. Then as you create new chapters you can
specify the default chapter that will follow. Here is an example of a linear flow of chapters:

Chapter Name Next Chapter Start Chapter End Chapter
Day 1 Day 2 Y N
Day 2 Day 3 N N
Day 3 Day 4 N N
Day 4 <NONE> N Y

You can always check to see the current chapter of the story, and then do different things using the
isCurrentChapter effect:

if(Effects.isCurrentChapter(Chapter.Day_1) == 1) then

-- Do chapter 1 stuff.

end

If you need to trigger a transition from one chapter to another then you call chapterGotoNext:

Effects.chapterGotoNext();

When you flow from one chapter to another, there are three events that occur:
1) the outro text of the previous chapter is displayed
2) the new chapter graphic is displayed
3) the intro text of the new chapter is displayed

The resulting chapter from the chapterGotoNext call will always be the default next chapter. If you want to
have a different resulting chapter then you call chapterSetNext:

Effects.chapterSetNext(Chapter.Day2_Other);

Then when another chapterGotoNext is called, the player will see the Day1 outro text, but then will instead
see the graphic and intro text for the OTHER Day 2.

Let’s say you wanted to have a branching chapter narrative in that during day 1, a player could cause an
event that would lead to a different day 2 and day 3. In this you would create two extra chapters for this new
branching flow.

Chapter Name Next Chapter Start Chapter End Chapter
Day 1 Day 2 Y N
Day 2 Day 3 N N

Day 2a Day 3a N N
Day 3 Day 4 N N

Day 3a Day 4 N N
Day 4 <NONE> N Y

So on Day 1, you would call a chapterSetNext to Day2a if this special event took place. Then all you need to
do is trigger chapterGotoNext (say whenever a player clicks on their bed) and the story will branch as the
diagram above.

There is another chapter call that you can call make if you want to set a different next chapter and perform a
transition all in one call:

 Effects.chapterSetNextAndGoto(Chapter.Day_2a);

One special thing to note is that as soon as you trigger a chapter transition with either a chapterSetNext or a
chapterSetNextAndGoto, the only time when a new chapterSetNext can be called is after the new chapter
has been introduced. Any other calls to set a new chapter will not work during this period. So make sure
you’ve done the chapterSetNext before you call chapterGotoNext.

Case Solutions
Case solution scripts are triggered when a player thinks they have solved the mystery. At that point the
players clicks the solve button in the sleuth menu. This starts a quiz that determines if the player has grasped
the subtle nuances of the solution to the story. Once the player has answered all of the question and
confirmed their solution, this starts the case solution script. The job of this script is to assess the player’s
answers, and then assign a case solution based on those answers.

 There are three key effects calls that are used in the case solution script:

• getQuestionAnswer – if the question was a “pick an option” multiple choice (only one answer can be
selected), then this function will return the number of the option that the player selected: 1 for the
1st option, 2 for the 2nd option, and so on. So this example will return the option that was checked for
the question named Question 3.

Effects.getQuestionAnswer(Question.Question_3);

• getCheckboxAnswer – if the question was a “pick multiple options” multiple choice (more than one
answer can be checked), then this function will return a 1 if a particular option was selected, and 0 if
the answer was not checked. This effect requires two parameters: the first specifies which question
you are checking, and the second specifies which answer number (1 to the number of options) you
want to know if it was checked. For example, this code will give you a 1 if the second option on
Question 4 was checked (and 0 if it wasn’t checked in the player’s answer).

Effects.getCheckboxAnswer(Question.Question_4, 2);

This way you can check if the player checked the second and fourth options, but didn’t check any of
the other options in the question.

• setCaseResult – once you’ve assessed all of the questions, then use this function to set which
solution the player has earned based on their answers.

Effects.setCaseResult(Solution.So_Close_But_Still_Wrong);

Sometimes a case result can be given based on particular scriptFlag value when the case solution was given:
e.g. a silver medal ending if the player took too long to figure out the solution, and a gold medal ending if the
current turn script flag is under 40 (i.e. the player took less than 40 moves to reach a solution). You would
simply do a check for the value of one of the script flags in the game, and then set the case result (solution)
as in the example above.

if(Effects.getFlag(Flag.currentTurn) < 40) then

Effects.setCaseResult(Solution.Just_in_Time);

else

Effects.setCaseResult(Solution.Too_Late);

end

So how do you use these functions in a Case Solution script? Let’s say you have a case quiz with five
questions. Four of the questions are pick an option (only one correct answer), and one is multiple choice that
has two correct answers. There are three endings to the story: one if you get everything right, one if you
make a mistake, and then one special hidden ending that occurs if you get all of the pick an option questions
correct, get the multiple choice question wrong, but select the fourth option.

Questions

Question1 – pick an option – Answer 3.
Question2 – pick an option – Answer 1.
Question3 – pick an option – Answer 4.
Question4 – pick an option – Answer 2.
Question5 – multiple choice – Answers 1 & 3 with
4 being a special answer that unlocks the hidden
ending.

Solutions

All_Correct – you got every answer right.
Wrong – you got something wrong.
HiddenEnding – you got every pick an option answer
correct, didn’t get the correct answer to the multiple
choice question, and you picked option 4 in
answering the multiple choice question.

So here’s the how we set-up a solution script:

• Handle all answers for the pick an option questions that don’t result in correct answers.
o Very simple conditional not-equal checks.

• Check for the patterns of multiple choice answers that provide a correct answer.
o Look for the correct pattern of multiple choice options that are both checked and

unchecked.
• See if the hidden option has been picked.
• If we’re still going, then only the wrong answer remains.

The other thing you need to know is that “~=” checks to see if something does not equal something else.
(remember that example from before).

So here is the script for the example above:

if(Effects.getQuestionAnswer(Question.Question_1) ~= 3) then

 Effects.setCaseResult(Solution.Wrong);

 return;

end

if(Effects.getQuestionAnswer(Question.Question_2) ~= 1) then

 Effects.setCaseResult(Solution.Wrong);

 return;

end

if(Effects.getQuestionAnswer(Question.Question_3) ~= 4) then

 Effects.setCaseResult(Solution.Wrong);

 return;

end

if(Effects.getQuestionAnswer(Question.Question_4) ~= 2) then

 Effects.setCaseResult(Solution.Wrong);

 return;

end

if((Effects.getCheckboxAnswer(Question.Question_5, 1) == 1) and

(Effects.getQuestionAnswer(Question.Question_5, 2) == 0) and

(Effects.getQuestionAnswer(Question.Question_5, 3) == 1) and

(Effects.getQuestionAnswer(Question.Question_5, 4) == 0) and

(Effects.getQuestionAnswer(Question.Question_5, 5) == 0)) then

 Effects.setCaseResult(Solution.All_Correct);

 return;

end

if(Effects.getCheckboxAnswer(Question.Question_5, 4) == 1) then

 Effects.setCaseResult(Solution.HiddenEnding);

 return;

end

Effects.setCaseResult(Solution.Wrong);

The first four conditionals check to see if you didn’t get the pick and options answers right (not equal to), and
if so then you get the Wrong solution and stop checking anything else with the “return” statement.

The big conditional is checking the status of all of the possible multiple choices for question 5. If that question
has been answered correctly (1 and 3 checked but none of the others checked) then you get the All Correct
solution.

The final conditional checks to see that even though you got question 5 wrong, did you check option 4 in that
question. If so then you get the Hidden Ending solution and stop checking anything else with the “return”
statement.

Finally, if you’re still checking then you got question 5 wrong but didn’t check answer 4 so you just get the
Wrong solution.

Advanced Scripting
(Coming Soon)

	Versions
	Scripting User Interface
	Script Triggers
	If-Then Scripting Language
	Intellitype Script Help
	Handing out Clues to the Sleuths
	Moving and Timed Events
	Take/Use Items
	Combine Items
	Triggering Different Story Introductions
	Story Solutions Enabled
	Story Chapters
	Case Solutions
	Advanced Scripting

